

## Holyport College Sixth Form Year 11 Transition Work



## CHEMISTRY

## Links to Essential Resources

- 1. Bridging the gap to chemistry student work booklet -- Print and Complete for September
- 2. GCSE chemistry <u>revision guide 1</u> and <u>revision guide 2</u>
- 3. GCSE chemistry <u>video clips and E resources</u>
- 4. Structure, bonding and properties summary sheet
- 5. Introduction to A-level Chemistry Pamphlet and Reading List

## All queries to -- s.doherty@holyportcollege.org.uk

| Core GCSE Topic ALL                                                           | Optional Extension/Enrichment – Hard-Core Chemists                                                                                                                                             |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculations in chemistry 1                                                   | How many atoms in your body were once in William Shakespeare?                                                                                                                                  |
| Calculations in chemistry 2 Triple<br>Students AND A-level Candidates<br>Only | What is the volume of: 1 kg of water; 1 kg of steam. How many water molecules are there in your body?. What volume of gas does 1 kg TNT produce? Titration problems in <u>booklet</u> (pge 20) |
| Atomic structure                                                              | Research shells, sub-shells and orbitals, and use SPDF notation to show the electron arrangements of Li, Na, K, F, Cl, He, Ne and Ar.                                                          |
| lonic and covalent bonding                                                    | What shape are the following molecules: water, ammonia, methane? What are: sigma, pi and coordinate bonds?                                                                                     |
| Structure, bonding and properties                                             | Explain why: helium is a solid at absolute zero; $H_2O$ is a liquid at room temperature whereas $H_2S$ is a gas; ice floats on water; Gecko's can walk up walls.                               |
| The Periodic Table and Reactivity of the Elements                             | What is the relationship between the position of an element in the periodic table and its electron arrangement?                                                                                |
| Patterns in Reactions                                                         |                                                                                                                                                                                                |
| Oxidation and Reduction                                                       | What is the difference between sodium nitrate(III) and sodium nitrate(V)?                                                                                                                      |
| Reactions of Acids                                                            | Why is the pH of: pure water = 7; 1M HCl = 0, 0.1 M HCl = 1?                                                                                                                                   |
| Energy Changes                                                                | How much energy is needed to boil 1 L of water? Q = m.c.Dt                                                                                                                                     |
| Equilibria                                                                    | Why is Fritz Haber known as the chemist of life and death?                                                                                                                                     |
| Reaction Rates                                                                | Use the "Boltzmann Distribution" to describe why reactions go faster when you use catalysts or higher temperatures                                                                             |